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Gravity-capillary rings generated by water drops 
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(Received 16 February 1988 and in revised form 17 May 1988) 

A theory for water waves created by the impact of small objects such as raindrops 
on an initially quiescent body of water is established. Capillary and dissipative 
viscous effects are taken into account in addition to gravity. It is shown that the 
prevailing waves are in a mixed capillary-gravity regime around a wavenumber Em 
which corresponds to the minimum value of the group velocity. The waves are 
described as function of time and distance by the linear superposition of two transient 
wave components, a ‘sub-k,’ ( k  < E m )  component and a ‘super-k,’ (k > E m )  
component. The super-Em components prevail a t  a short distance from the drop, 
whereas only the sub-Em ones remain a t  a larger distance. The relative time history 
of the wavetrain is independent of the size of the drop, and its amplitude is 
proportional to the drop momentum when it hits the free surface. The wave pattern 
is composed of a multiplicity of rings of amplitude increasing towards the drop 
location and is terminated by a trailing wave with an exponential decay. The number 
of rings increases with time and distance. 

1. Introduction 
The rings formed by raindrops in a pond, or by the fall of  any tiny object, are a 

natural fascinating phenomenon which is commonly observed. However, its tiny 
scale, its transient nature and its relative complexity, has prevented the casual 
observer from desrribing it in its intricate details. It was not until high-speed 
photography could be used that one was able to visualize the small capillary crown 
created at  the drop location, evolving into the more conspicuous expanding rings 
vanishing slowly away. 

Surprisingly, such a common phenomenon has little inspired hydrodynamicists. It 
seems that only Crapper (1984) has mentioned the subject: his figure 5.5, p. 115, 
showing a photograph of the rings caused by raindrops of different size a t  several 
different times. Lately, the subject matter has become more pertinent, in view of the 
effects that  gravity-capillary rings generated by raindrops have on radar (and even 
sonar) returns in the frequency range of interest. In  addition, the inception and 
damping of wind waves, the exchange of interface momentum, the rate of turbulence 
and mixing processes, and the breaking of surface films, are all phenomena that are 
influenced by raindrops and their subsequent gravity-capillary rings. 

From a theoretical point of view, this phenomenon belongs to the family of 
impulsively generated water waves which has been investigated frequently in the 
past in regard to tsunami and explosion-generated water waves (Kranzer & Keller 
1951; Kajiura 1963; Le Mehaute 1970). However, the capillary and viscous 
dissipative effects, which have been neglected in the past, are now of primary 
importance. 
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The purpose of this paper is to present a theoretical treatment of the 
gravity-capillary rings generated by a raindrop in a liquid, allowing us to explain 
and describe a number of commonly observed physical phenomena. The investigation 
is limited to linear approximations, which limit its validity a t  the origin. The viscous 
damping resulting from the free-surface boundary layer due to surface film 
contamination is introduced as a correction to the non-dissipative irrotational main 
flow as done by Dorrestein (1951) in the case of monochromatic one-dimensional 
wave. Whether the rain itself breaks the surface film and subsequently modifies the 
wave damping, as suggested by Van Dorn (1966), remains an open question. 

Initially, a general dimensionless mathematical model for axisymmetric irro- 
tational free-surface flow is recalled. Then initial boundary conditions related to the 
raindrop are introduced. Analytical solutions are presented and the results are 
analysed, with emphasis on the effect of dispersion in the mixed capillary-gravity 
regime and the trailing wave. 

2. Establishment of the equations of motion 
The motion is defined with respect to  time t* and space (r*,  z*, #*) in a cylindrical 

coordinate system centred a t  the impact spot of the drop. The horizontal radial 
distance is r* ,  and the vertical distance z* is positive upwards from the still water 
level, an asterisk denoting dimensional quantities. The motion is symmetrical with 
respect to the z-axis. For all practical purposes, the water depth is infinite relative to  
the wavelengths generated by the drop and this is assumed. 

Initially, neglecting the dissipative processes a t  the fall location and in the thin 
near-surface viscous boundary layer, the motion is assumed to be irrotational, 
allowing the definition of a potential function $*(r*, z*,  t*) with a free surface 

The motion is non-dimensionalized with respect to a horizontal distance R*, which 
characterizes the size of the initial disturbance. The following dimensionless 
quantities are now defined (g is the gravitational acceleration) : 

7"(r* ,  t * ) .  

Also, p is the water density (1 g/cm3), 7* the surface tension per unit area, cr* the 
frequency and k* the wavenumber, and 

(T* z 74 dyneslcm), cr = cr* 
T* 

pg R*" 
7=- 

The solution satisfies continuity. The linearized boundary condition a t  the free 
surface includes an additional term due to surface tension, so that 

which gives the same free-surface condition as found for plane waves. Accordingly, 
the general solution is obtained by a continuous linear superposition of wave 
components characterized by a wavenumber k such as given by (see Lamb 1932) 

$ ( r ,  z ,  t )  = lom Jo ( k r )  e-lCz [A(k )  sin crt + B(k)  cos crt] k dk (4) 
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and 
~ ( r ,  t )  = f i J o ( k r )  [ A ( k )  coscrt-B(k) sincrt] akdk.  

The coefficients A(k) and B(k) are defined from initial free-surface conditions imposed 
by the raindrops. The dispersion relationship is 

cr2 = k[l+7k2].  (6) 

The initial conditions are defined by an impulse on the free surface over a radius 
R*, which can be considered as being equal to the drop radius, as a first 
approximation. Assuming that the water drop movement following the impact is 
negligible, the total impulse I: on the free surface is equal to  the drop momentum 
M*W*, where M* is its mass and W* its fall velocity, so that in dimensionless 
terms M* W* 4n I - 7 - z - w .  -pR (gR*)i 3 (7 )  

Furthermore, if one assumes that the drop is spherical and reaches terminal velocity 
before impact, then, in the case of a drop larger than 1 mm in radius, 

I t = & &  4n z 273.61), 

where C, (the drag coefficient) x 0.5 and the density ratio plp, of water to air is 800. 
It has been known for a long time that large drops are not quite spherical and that 
the drop size is practically limited by the pressure forces to a maximum value of 
R* x 4.0 mm (Horton 1947; Gunn & Kinzer 1949; and Lhermitte 1971). 

This total impulse is equal to the sum of the pressure distribution p ( r o ,  O), where 
ro is r within the limits of the initial disturbance: 

It  =Jrp/ p(ro,  8) S(t-to) dtrodrod8, (9) 
0 t o  

where S is a Dirac delta function and to is the time when the drop reaches the free 
surface. 

The pressure distribution p(r,,, 8) is loosely related to the kinetic energy and mass 
distribution. It is assumed that 

p(r0, 6 )  = P,,, (1  -.r. (10) 

For a spherical mass distribution prior to impact n = g. We assume n = 1, however, 
corresponding to a parabolic distribution, for the sake of mathematical convenience. 
(It is found that the results are not sensitive to the exact form of the pressure 
distribution.) Accordingly, combining (7 ) ,  (9) and (lo),  the initial condition a t  the 
free surface in term of $ can be written as 

$(Yo, t o )  =gw(l -r ; ) ,  To < 1.  ( 1 1 )  

Referring to (4) where z = 7 M 0 and t = to = 0,  yields A ( k )  = 0 and 

PW(1-r:) = ~ o m J o ( k r )  B(k) kdk. 

Equation (12) can be inverted by virtue of the Fourier-Bessel theorem. Then 
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which is a Hankel transform that can be integrated analytically : 

'I 

B(k)  = BW;J2(k) 

Inserting (14) into (15) and dcfining 

finally gives 
O(r,  t )  = / o x ~ J 2 ( k ) J o ( k r )  s i n d d t ,  

where n is given as function of k by the dispersion relationship (6). Reverting to 
dimensional quantities, 

3 q* (gR*)i R* 
- - ~ = (T) lo' $ J2 (k*R*) J ,  (k*r*) sin n*t* dk* 
16R* W* 

Since k*K* is small for the waves under consideration as seen in the following, J2 can 
be replaced by 

J2 (k*R*) x 2(!$*R*)2 (18) 
so that 

u*k* Jo (k*r*) sin n*t* dk*. 3 gq*(r* ,  t * )  - 6.npgy* 

Dividing the integral (19) (dimension C 2 T P 1 )  by CT: kz, a universal dimensionless 
solution is obtained. The relative time history, with maxima, minima and zero 
crossing, of the free-surface elevation is independent of the size of the original 
disturbancc. Also. it shows that the amplitudes are proportional to the drop 
momentum M*W* or. equivalently, proportional to R*3W x R*35.  The fact that  the 
relative time history of the free-surface elevation is independent of the size of the 
initial disturbance for the type of waves under consideration, but depends only upon 
the fluid characteristics and gravity (p, r*, g) is an interesting fact which is not 
confined to parabolic disturbances. It is a property of all small disturbances of the 
free surface. For example the Hankel transform of a disturbance with a uniform 
distribution is ( R l k )  J l (kR) ,  that of a parabolic disturbance with lip is ( R l k )  J3(kR),  
and that of a quadratic disturbance is ( 4 / k 2 )  J,(kR). As long as (kR)  remains small, 
all these Sessel functions can be replaced by the first terms of their power expansion, 
which gives R2/2 ,  R4k2/48,  R4k2/96 respectively. A11 these functions allow us to 
extract the R-function from the integral, influencing only the wave amplitude and 
independent of frequency. 

3. Analytical solution 
In  the general case (16) cannot be integrated analytically. However a t  the point 

of impact Jo(kr) = 1. Then it has been found analytically in the non-dispersive case 
(n  = k )  and numerically in the decp-water case (n = k 2 ) ,  that the movement a t  the 
point of impact is non-oscillatory (Le Mehaute, Wang & Lu 1987). This means that 
the multiplicity of rings that are observed a t  a distance are solely the results of linear 
dispersion from the initial non-oscillatory movement. The movement a t  the drop 
location calms down very rapidly following a unique rapid down and up oscillation 
(6' < 0.1, when t* = 2(gR)+ x 0.20 to 0.40 s). This can also be observed by throwing a 
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rock into an initially quiescent body of water. The only movement that is observed 
is the multiplicity of circular rings radiating outwardly, whereas the free surface at 
the point of impact calms down very rapidly. Therefore, practically no energy 
radiates from the point of impact after a very short time following the initial contact 
of the drop with the initially quiescent liquid, a fact which will be used in the 
following treatment of the trailing wave. 

At a short distance (a few em) when kr 9 1, JO(kr) can be replaced by the first term 
of its asymptotic expansion and the stationary phase approximation can be used. 
Using standard procedures (Jeffreys & Jeffreys 1956), one finds after some arithmetic 

( ICV 7 sin (d- kr), O(r, t )  = - -J (k)  
i f 7  
r k2 I--dV/dkl 

where 

r d r  1+37k2 
t dk 2ki( 1 + 7k2)i 
- = V(k) = 

is the group velocity (Crapper 1984). Therefore the solution appears as a sinusoid in 
terms of r or t ,  modulated in amplitude by a function of k .  

Recall V is minimum ( V  = V,) when 

dV d2a 3(7k2)'+67k2-1 
= 0, - _ -  _ -  

dk -dE2  4k%( 1 + rk2)f 

i.e. when 

7k2 = rkh = 0.1547 (23) 

km = 0 . 3 9 3 3 ~ ~ ; .  (24) 

Accordingly, V: = 17.9 cm/s and k; = 1.432 cm-l, corresponding to a wavelength of 
L; = 4.39 cm. It is also seen that the energy travels a t  the same velocity V* for two 
different values of k*, which implies that the wave motion at  a given ( r* ,  t*)-value 
is the sum of two wave components with different transient frequencies. 

The existence of a minimum group velocity V, and the fact that the motion at  the 
drop location is nearly instantaneous, as shown in the previous section, implies that 
the free surface is still over an area limited by a radius r$ = V$t* ,  a fact also 
noted by Crapper (1984). Also, recall that the group velocity exceeds the phase 
velocity when 7k2 > 1 and tends towards $ c when k +  CO, whereas it tends towards 
fc when k +- 0. When dV/dk is zero, the stationary phase approximation is no longer 
valid, as discussed below. 

4. Insertion of dissipative processes and results 
An active dissipative process, corresponding to the drop deformation and mixing, 

exists a t  the drop location, but momentum is conserved. At a distance, the 
dissipation process in deep water is due to the surface boundary layer which results 
from contamination of the surface (Dorrenstein 1951 ; Van Dorn 1966). Also, there 
is dissipation resulting from the straining of irrotational motion, which induces a 
streaming motion due to the second-order mean velocity field. This effect is germane 
in regard to mass transport and momentum balance (Phillips 1966). 
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In  both cases, a damping coeficient D ( k * )  is given by 

D ( k * )  = exp [ -y,*t*] ,  

where, in the case of a fully contaminated surface, 

and v is the kinematic viscosity. 
The damping due to internal strain is given by 

y:2 = 2vk*2. (27 1 
Inserting (20), where J, is replaced by (18), the dimensional solution to the problem 
is finally given by 

where 

and 

k*V* )tn(k*) sin (a*t-k*r*) ,  3 gy* ( r* ,  t * )  a* -- - - 

2 Y * ~ W *  r* ( 1  -dV*/dk*l 

da* r* 

dk* t* 
V * ( k * )  = ~ == - (29) 

The analytical results corresponding to the previous formulation is given in figure 
1 ( a ,  b ,  c) showing 

in terms of the right-hand side of (28) .  The results are initially presented in terms of 
t* for fixed values of r* (30, 60, 120 cm) in the case of a contaminated free surface 
(cyuation (26)). For each value of r* there is a corresponding limit maximum time 
t* = r*/V: of the trailing wave, after which the free-surface elevation tends to zero 
as seen in the following. The two components of the waves, sub-k,, where k < k,, 
and super-k,. where k > k,, are presented on two separate horizontal axis (YG, Yc). 
The total wave movement is given on a top third axis Y, given by the linear 
superposition of the two wave components. 

It is observed that the super-k, components precede and initially hide the sub- 
k, components (figure l a ) ,  but they are damped rapidly with distance, where only 
the sub-k, components remain (figure l c ) .  At the origin most of the energy is 
imparted to waves of very high frequency, but, at a short distance (2-3 cm), the 
prevailing apparent frequencies are in the mixed capillary-gravity regime. Indeed, 
the drop sizes (which intervene theoretically in J2(k*R*)) are generally too small to 
impart a significant amount of energy in the 'pure' gravity regime, and the wave 
damping a t  high frequency is too effective for the 'pure' capillary waves, so that they 
can be observed near the drop location only. 

In  the case where thc energy dissipation process is limited to viscous strain 
(equation ( 2 7 ) ) ,  then the sub-k, wave components prevail a t  a much longer distance 
as seen in figure 2. 

If one neglects energy dissipation altogether (figure 3),  then one can see that the 
wave height in the sub-k, regime increases with time to a maximum value 
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FIGURE 1 .  Functions Y(t*) vs. time t* at three distances T* from the drop ( ( a )  30, ( b )  60, (c) 120 cm) 
in the case of a contaminated free surface. Sub-k, components : Y, ; super42  components : Y, ; and 
Y = YG+ Y,. Note the differences in scales. 

corresponding to the maximum of J2(k*R*). This is logical since i t  is expected 
that most of the energy is initially imparted to wavelengths of the order of 
2R*. (The maximum of J2 is for k*R* = 3.1, corresponding to a wavelength 
L* = 2nR*/3.1 x 2.02R*). The importance of the dissipation process for an accurate 
prediction of wave amplitude and wave steepness is then appreciated. 

In  another form of presentation, the results are given at  a fixed time t* as function 
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FICL-RE 2. Functions Y(t*) us. time t* at a distance r* = 60 cm in the case of damping by 
internal viscous strain alone. 
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FIGI-RE 3. Functions Y(t*)  at a distance r* = 60 cm from the drop in the case where viscous 
dissipation is neglected. 

of the horizontal distance r* in the case of a fully contaminated surface (equation 
(26)). Thcn t* is replaced by r * / V *  in (28). The results are given for the near field 
(0 < r* < 100 cm) (figure 4u)  and for the far field (0 < r* < 300 em) (figure 4b) .  I n  
these figures, only the sum of the two components is presented. One sees that at an 
early time after the drop, the super k& components hide the sub-k; components. 
Later as thc wave travels away, the only signature of thc drop are the sub-k; 
components, whereas the super-k& ones have virtually vanished. 

5. The mixed capillary-gravity regime 
The pure capillary and pure gravity regimes correspond to the cases where r Ic2 + 

1 and T = 0, respectively. For the problem under consideration, in the frequency 
range of interest, the problem belongs to the mixed capillary-gravity regime. Since 
high-frequency waves are rapidly damped, and since too little energy is imparted to 
the lower frequency, it happens that for practical purposes, the energy spectrum is 
centred around k, (or crm), corresponding to the minimum group velocity V,. 
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FIGURE 4. Successive form of functions Y ( r * )  at 4 time intervals for ( a )  the near field (0-1 m) and 
( b )  the far field (0-3 m ) .  (Note the differenre in vertical scales on the two curves at t* = 3.36 s). 

A mixed capillarj--gravity regime is defined between the pure capillary and the 
pure gravity regimes around k,. Since d%/d; = 0 at  k = k,, the local frequency 
variations are given by 

darn 1 d3gm 
dk  6 dkk 

(T = ( ~ , + - ( k - k , ) + - - - - ( k - k , ) ~ ,  

or> as a first approximation, r~ z u,+ V, ( k - k m ) ,  

which gives u = 1.086k~;+ 0.2468~-i. (34) 

(33) 

A systematic comparison of the values of (T*, phase and group velocity (C*, V * )  in 
the general case when both gravity and capillarity are taken into account, on one 
hand, and their asymptotic forms established for the pure capillary, the pure gravity 
and also the mixed regimes as defined by (34), on the other hand, yields their 
optimum ranges of validity which are given by table 1 .  

It is seen that the mixed regime such as defined by (33) covers a broad range 
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M a x  error Max error 
cT*, c* ff*. c* 

Capillary 13 Y" Mixed 1 . 7 %  Gravity 

L* (cm) L* < 1.2 Id* = 1.2 1.2 < L* < 8.8 L* = 8.8 L* > 8.8 
T* (s) T* > 0.05 T* = 0.05 0.05 < T* < 0.23 T* = 0.23 T* > 0.23 
k* (cm-') k* > 5.23 k* = 5.23 5.23 > k* > 0.70 k* = 0.7 k* < 0.70 
cT* (s-1) n*> 125 u* = 125 125 > CT* > 27 ff* = 27 ff* < 27 

TABLE 1. Optimum ranges of validity of frequency, and phase and group velocities 

of values, which are most pertinent to the problem under investigation. The 
accuracy of (34) is within 1 %  between 2.41 > k* > 0.80 and within 0.1% between 
1.95 > k* > 1.00. 

It can be concluded that waves generated by liquid drops belong to the mixed 
regime around the minimum group velocity values (k: = 1.43 cm-l, L: = 4.39 cm), 
for which the dispersion relationship is given by (33). In  this respect these waves are 
nearly non-dispersive in the sense that a is linearly related to k, and the group 
velocity varies little with frequency. 

6.  The trailing wave 
When d2u/dk2 + 0, and I/ + V,, the value of 7" given by (28) tends to infinity. 

Then the stationary phase approximation is no longer valid. A locally valid solution 
can be obtained by making use of (32), by analogy with the leading wave ofa  tsunami 
(Whitham 1974). Replacing J, by the first term of its asymptotic form, (16) 
becomes 

O(r, t )  =JomF(k)  exp[i(at-kr+$)]dk, (35) 

where 

Inserting the value of a given by (33) into (35), and replacing F ( k )  by F(k,) 
yields 

m 

O(r, t )  = F(k,)  I,.. expi [(urn+ VmK)t-kr+yK3t+a]dk, (37) 

where K = k - k ,  (38) 

and (39) 

Adding and subtracting k,r to the argument and since the integral is valid only 
locally (k % km), O(r, t )  can still be written 

m 
O(r, t )  = F(k,)  exp i (a, t - k, r +in)  / exp i [K( V, t - r )  + yK3t] dK. (40) 

J -m 

Changing variables as follows : 
(3744 s = -  

K '  

V,t-r z=- 
(3744 ' 
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gives 
8(r ,  t )  = F(k,) cosk,(V,t-r+$x) cos(sz+$s3)ds. 111 (43) 

Dividing the integral by x, an Airy function Ai ( z )  is obtained. Therefore one has 
finally 

8(r ,  t )  = F(k , )  cosk,(V,t-r+$x)xAi ( z ) .  (44) 

Note that this solution is nearly identical to the case of a leading gravity wave 
(Whitham 1974), except that the Airy function is now the envelope of the cos 
function instead of being the free-surface elevation. 

At the trailing edge when r = V,t, then (Abramovitz & Stegun 1965), 

Ai (0) = 3-;/T($) = 0.355, (45) 

so that  (46) 

which is finite. 
It is recalled that when z is large and positive ( r  < V, t ) ,  Ai ( z )  decays rapidly and 

becomes negligible when z z 2 (as does 8). When z is large and negative ( r  > V,t): 
Ai ( z )  exhibits oscillatory behaviour which decreases in amplitude as z increases. As 
r $ V, t ,  the solution merges with the stationary wave solution as shown by Whitham 
(1974). It can be concluded from the form of the Airy function as well as from the 
stationary phase solution that the trailing wave is the largest wave. The elevation of 
the free surface at r* = V,t* is not nil and is given by (46). 

O(rm, t,) = 0 . 3 3 5 ~  F(k , )  COB ($x k,) ,  

7. Conclusions 
A theory for watcr waves generated by the fall of tiny objects such as raindrops 

on an initially quiescent body of water has been established. Most theoretical 
features that have been found are well illustrated in the previously mentioned 
photograph presented by Crapper (1984). Our main conclusions arc : 

(i) Such waves belong to the mixed capillary-gravity regime, between pure 
capillary waves and pure gravity waves. These waves obey, as a first order of 
approximation, a linear relationship between frequency and wavenumber (equation 
(33)). The group velocity varies little with frequency. 

(ii) The multiplicity of rings observed at a distance from the drop is solely the 
result of dispersion from a unique oscillation taking place a t  the drop location. 

(iii) These waves have a narrow range of wavenumbers around k&, the 
wavenumber that corresponds to the minimum possible group velocity V&. 

(iv) The relative time history of the free-surface elevation (zero crossing, and 
locations of maxima and minima) is given solely as a function of time t* and distance 
r*,  as a function of the fluid characteristics r*, p and to a first approximation g, and 
does not depend upon the size R* nor velocity W* of the drop. (This would not be 
valid for original disturbances of larger sizes.) 

(v) The free-surface elevation at a given time t* or distance r* (such as r* > V, t * )  
is given by the linear sum of two wave components: a sub-k& and a super-k& 
component. At the limits, the sub-k& components merge with pure capillary waves, 
and the super-k& components with the pure gravity waves. 

(vi) Most of the energy imparted by the drop to the initially quiescent body of 



426 B. Le Mdhaute' 

watcr is in the capillary range. However, the corresponding waves are damped very 
rapidly with distance and can only be observed near the drop. 

(vii) At a short distance from the drop ( <  20 cm) (and small time after impact), 
the super-k: components have a relatively large amplitude. They precede and hide 
the sub-kz components. 

(viii) At a large distance ( > 60 em) (and larger time), the super-kz components are 
damped rapidly and only the sub-kz components remain visible. 

(ix) Thc wave amplitude is proportional to the momentum of the falling object, 
M*W*, i.e. proportional to R*3W*, which is R*35 in the case where W* reaches 
tcrrninal velocity and R* > 1 mm. 

(x) Only thc larger drops (R* > 1 mm) are able to impart enough visible energy in 
the sub-kg range, and the resulting rings cover a visibly large area (r* > 1 m). The 
smaller drops (R* < 1 mm) cause visible rings in the super-k, range, which can be 
observed near the drop location only ( r  < 20 em). 

(xi) Since the drop size is limited by air pressure forces to  a maximum value of 
about 3 to 4 mm and since drops that are smaller than 1 mm cause rings of very 
limited visible size, it  appears that the prevailing sea state generated by intense rain 
(R* > 2 mm) can be described by a relatively narrow energy spectrum peaked near 
k z ,  of sub-k: components. 

(xii) The trailing wave has the highest wave crest and is terminated by a rapidly 
decaying elevation towards the drop location. The free-surface elevation at  r* = V z t  
is finite. Inside that ring (r* < r g ) ,  the free surface is practically quiescent. 

(xiii) An accurate assessment of the free-surface film contamination and 
dissipative processes is paramount to an accurate determination of the wave 
amplitude and wave steepness. 

This study was partly sponsored by the US Army Corps of Engineers under 
subcontract with the Defense Nuclear Agency. The author acknowledges Drs Mike 
Brown, Richard Skop and Shen Wang for many useful discussions during the course 
of this investigation, 
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